Дисциплина: «Химия» Объем учебных часов/ кредитов: 90ч/3 к Курс 1 Семестр II Составитель: 1и.о. проф. Дауренбеков К.Н., 2и.о. доцента Дильдабекова Л.А.
Составитель: 1и.о.проф. Дауренбеков К.Н.,
1и.о.проф. Дауренбеков К.Н.,
in the sight was a squirk to sight was a squirk to a skill a se squire
YOU THE ST 4/2 ST 1/2 ST 1/2 ST 1/2 ST 1/2 ST 1/2 ST
Протокол № <u>11.1</u> от « <u>2.6</u> » <u>06</u> 2025 г.
Зав. кафедрой, к.х.н., и.о. проф Қ.Н.Дәуренбекс

OŃTÚSTIK-QAZAQSTAN MEDISINA AKADEMIASY «Оңтүстік Қазақстан медицина академиясы» АҚ	SKMA -1979 -	SOUTH KAZAKHSTAN MEDICAL ACADEMY AO «Южно-Казахстанская медицинск	ая академия»
Кафедра химических дисципл	тин, био	логии и биохимии	46-11
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ СРЕДСТВА			2стр из 4

- 1. Что изучает термодинамика? Основные понятия, применяемые в химической термодинамике.
- 2. Первый и второй законы термодинамики. Связь параметров системы (температура, внутренняя энергия, энтальпия, свободная энергия, энтропия) с живой материей.
- 3. Термохимия. Теплоемкость. Термохимические расчеты и их использования энергетической характеристики в биохимических процессах. Тепловые эффекты. Закон Гесса.
- 4. Что изучает кинетика. Скорость реакции. Зависимость скорости реакции от различных факторов. Закон действующих масс. Правило Вант-Гоффа.
- 5. Что такое энергия активации. Уравнение Аррениуса.
- 6. Влияние катализаторов на скорость реакции. Биологическая роль кислотно-основного и ферментативного катализа.
- 7. Общие представления о растворах.
- 8. Способы выражения состава раствора.
- 9. Растворимость и ее зависимость от различных факторов. Законы Генри и Сеченов.
- 10. Коллигативные свойства растворов. Что такое осмос и осмотическое давление. Осмотическое уравнения Вант-Гоффа.
- 11. Роль осмоса в биологических процессах.
- 12. Давление пара над раствором и закон Рауля.
- 13. Гипо-, гипер- и изотонические растворы в медицине. Плазмолиз и гемолиз.
- 14. Повышения температуры кипения и понижения температуры кристаллизации раствора. Приведите формулы расчета.
- 15. Теория кислот и оснований (Аррениуса, Бренстеда Лоури). Определения понятий кислота и оснований.
- 16. Электролитическая диссоциация. Константа и степень диссоциации. Закон разведения Оставльда.
- 17. Ионное произведение воды. Водородный и гидроксильный показатели.
- 18. Что такое гидролиз? Объясните основные случаи взаимодействия солей с водой.
- 19. Какие растворы называются буферными. Механизм буферного действия.
- 20. Расчет рН и определения буферной емкости буферных систем.
- 21. Буферные системы крови. Кислотно-основное равновесие биологических жидкостей.
- 22. Биогенные s, p, d- элементы и их биологическая роль.
- 23. Комплексные растворы и их свойства. Медико-биологическая роль комплексных соединений.
- 24. Сущность и направление окислительно-восстановительных реакций. Электродные потенциалы. Уравнение Нернста.
- 25. Значение окислительно-восстановительных процессов в медицине. Потенциометрия в медицинской практике.
- 26. Поверхностные явления на границе раздела фаз. Энергия Гиббса. Поверхностное натяжение
- 27. Поверхностно-активные (ПАВ) и поверхностно-инактивные вещества (ПИВ).
- 28. Поверхностная энергия. Правило Дюкло-Траубе.
- Адсорбция. Уравнение изотермы адсорбции Гиббса. Уравнения Ленгнера и Фрейндлиха.
 Применение в медицине.
- 30. Хроматографические измерения и их применение в медицине.
- 31. Дисперсные системы. Классификация и методы получения.
- 32. Молекулярно-кинетические и оптические свойства коллоидных растворов.
- 33. Строение коллоидной частицы (мицелла).
- 34. Электрофорез и электроосмос. Применения в медицине.
- 35. Методы очистки коллоидных растворов.
- 36. Устойчивость и коагуляция коллоидных систем. Правила Шульце-Гарди.
- 37. Особенности растворов ВМС. Набухания.
- 38. Найти объема 2н раствора H_2SO_4 (мл) необходимый для приготовления 250мл 0,1н.
- 39. Найти массовую долю глюкозы в растворе, содержащем 280г воды и 40г глюкозы.

- 40. Вычислите массу перманганата калия для приготовления 50г 5%-ного раствора.
- 41. Вычислите массовую долю хлорида натрия в растворе, содержащем 80г H₂O и 20г NaCI.
- 42. Сколько граммов Na₂CO₃ содержится в 500мл 0,25н раствора?
- 43. Плотность 9% -ного раствора (по массе) раствора сахарозы $C_{12}H_{22}O_{11}$ равна 1,035 г/мл. Вычислите молярность и моляльность раствора.
- 44. Вычислите мольные доли спирта и воды в 96 % (по массе) растворе этилового спирта.
- 45. В каком объеме 0,1н раствора содержится 8г CuSO₄?
- 46. Чему равна молярная концентрация раствора, если в 1л раствора содержится 20г NaOH.
- 47. Вычислите эквивалентную концентрацию раствора серной кислоты при растворении 4.9г H_2SO_4 в 250мл раствора.
- 48. Найти массу нитрата натрия, необходимую для приготовления 200 мл 0,5н раствора.
- 49. Определите тепловой эффект реакции горения метана $CH_4(r)+2O_2(r)=CO_2(r)+2H_2O(r)$, если тепловые эффекты образования равны соответсвенно:-74,9; -393,5; -241,8 кДж/моль.
- 50. Вычислите значение ΔH^0_{298} для протекающих в организме реакций превращения глюкозы: $C_6H_{12}O_6(\kappa) = 2C_2H_5OH(\kappa) + 2CO_2(r)$, если $\Delta H^0 = -1273$,0; -277,6; -393,5 кДж/моль.
- 51. Вычислите значение ΔH^0 для протекающих в организме реакций превращения глюкозы: $C_6H_{12}O_6(\kappa) + 6O_2 = 6CO_2(\Gamma) + 6H_2O(\kappa)$, если $\Delta H^0 = -1273$,0; -393,5; 285,8 кДж/моль.
- 52. Вычислите энергию Гиббса для оксида железа (II) при восстановлении магнием: ΔG_{FeO} = -244,3 кДж/моль, ΔG_{MgO} = -635,6кДж/моль.
- 53. Вычислите энергию Гиббса для оксида (II) меди при восстановлении водородом: $\Delta G_{\text{СиО}} = -129,9$ кДж/моль, $\Delta G_{\text{H2O}} = -273,3$ кДж/моль.
- 54. Вычислите тепловой эффект реакции оксида меди при восстановлении кальцием, если $\Delta H^0_{\text{СиО}}$ = -162,0кДж/моль, $\Delta G_{\text{СаO}}$ = -635,5кДж/моль.
- 55. Не производя вычислений найти знак энтропии для процесса: $N_{2(2)} + 3H_{2(2)} \rightarrow 2NH_{3(2)}$
- 56. Не производя вычислений найти знак энтропии для процесса: $2CO(z) + O_2(z) \rightarrow 2CO_2(z)$
- 57. Концентрация $[H^+]$ в растворе равна 10^{-8} , его значение рОН будет равно.
- 58. Вычислите pH растворов, в которых концентрация ионов OH $^{-}$ (моль/л) равна а) $2,7\cdot10^{-10}$, б) $5\cdot10^{-4}$.
- 59.~Вычислите pH 0.01н раствора уксусной кислоты, в котором степень диссоциации равна 0.042.
- 60. Вычислите рН 0.01н раствора муравьиной кислоты, в котором степень диссоциации равна 0,1.
- 61. Температурный коэффициент скорости реакции равен γ =3, при увеличении температуры на 40^{0} С на сколько повысится скорость химической реакции.
- 62. Как изменится скорость реакции 2NO (Γ)+O₂(Γ) =2NO₂(Γ) если увеличить давление системе в 3 раза.
- 63. Температурный коэффициент скорости реакции равен γ =2, при увеличении температуры на $50^{0}\mathrm{C}$ на сколько повысится скорость химической реакции.
- 64. Вычислите pH 0,02M NH₄OH раствора (Кд=1,8·10⁻⁵).
- 65. Вычислите рН 0,01н СН₃СООН раствора (Кд=1,8·10⁻⁵).
- 66. Чему равно осмотическое давление 0.5м раствора глюкозы $C_6H_{12}O_6$ при температуре 25^0 С.
- 67. Вычислить осмотическое давление раствора, содержащего 16 сахарозы ($C_{12}H_{22}O_{11}$) в 350 г воды при температуре 293К. Плотность раствора считать равной единице.
- 68. Вычислить осмотическое давление 0,9 %-ного раствора NaCl. Плотность раствора считать равной единице.

- 69. На сколько градусов повысится температура кипения, если в 100г воды растворить 9г. глюкозы (E=0,52).
- 70. При какой температуре будет кипеть 50% -ный (по массе) раствор сахарозы ($C_{12}H_{22}O_{11}$) E=0.52.
- 71. При какой температуре будет кристаллизоваться 40% -ный (по массе) раствор этилового спирта C_2H_5OH (K=1,86).
- 72. При растворении 5,0 г вещества в 200г воды получается не проводящего тока раствор, кристаллизующийся при -1.45° С. Найти молекулярную массу вещества (K=1.86).
- 73. Сколько граммов глюкозы надо растворить в 100г воды, чтобы понизить температуру кристаллизации на 1 градус (К=1,86).
- 74. Сколько граммов сахарозы надо растворить в 100г воды, чтобы повысить температуру кипения на 1 градус (Е=0,52).
- 75. Найти температуру кипения раствора, содержащем 65г сахарозы в 250г воды (Е=0,52).
- 76. При растворении 13г неэлектролита в 400г диэтилового эфира температура кипения повысилась на 0,453К. Определить молекулярную массу растворенного вещества (Е=2,02).
- 77. Рассчитать электродный потенциал железного электрода при концентрации если ϕ^0 Fe²⁺/Fe=-0,44B.
- 78. Рассчитать электродный потенциал медного электрода при концентрации CuSO₄ 0,01M, если $\varphi^0 \text{Cu}^{2+}/\text{Cu}=0,34\text{B}.$
- 79. Чему равен потенциал водородного электрода при a) pH=7 b) pH=5 c) pH=10.
- 80. Вычислить pH буферного раствора, состоящего из 0,5м CH₃COONa и 1м CH₃COOH (pK=4,75).
- 81. Вычислить рН буферного раствора, состоящего из 19мл 0,1м NH₄OH и 10мл 0,01м NH₄CI (рК =4,75).
- 82. Вычислить рН буферного раствора, состоящего из 0.2м NaHCO₃ и 1м Na₂CO₃ (рK=10,3).
- 83. Вычислить рН буферного раствора, состоящего из 10мл 0,01н НСООNа и 10мл 0.02н НСООН (pK=3,75).
- 84. Найти зону буферного действия, если у фосфатного буфера рК=7,2.
- 85. Найти степень окисления комплексообразователя в соединении $K[Co(H_2O)_2(CN)_4]$.
- 86. Найти степень окисления комплексообразователя в соединении $(NH_4)_2[Fe(SO_4)_2]$. BUIN SKING. EULIKA SKING. EULI

July Sking Edil K Sking Edil K